目前我国井工煤矿井下工作人员避难步骤一般为:灾害发生后,在灾区范围内的井下工人应马上佩戴自救器,选择不需穿越火区且距新鲜风流最近最安全的避灾路线迅速进进入安全区域,并尽快升井避灾。着不仅需要井下逃生人员清楚灾害位置,熟悉通风系统、避灾方法和逃生路线,还需要有能够提供足够氧气的自救器来保证工人安全升井。因此有很大的局限性主要表现在:
紧急避险系统能够在保障矿工生命中发挥重要作用。美国矿山安全健康监察局(MSHA)分析了1900~2006年的煤矿井下事故,发现264名矿工在事故发生后依然幸存,但最终只逃生和等待救援中丧生。针对类似情况下的矿工安全,MSHA认为,通过实施新的标准可挽救其中43名矿工的生命,余下的221名可通过建立紧急避险系统为其提供生命保障,MSHA估计,如果使用救生舱等避险设施,可使井下发生事故后矿工生命挽救率提高25%~75%。有关专家对国外36起典型事故进行分析,发现发生在工作面区域的人员死亡大部分发生在逃生途中;火灾和窒息事故的人员死亡主要发生在人员逃生或逃生受阻的过程中。因此,建立井下紧急避险系统对提高遇险人员的生存概率十分重要。
(4)狭小的井下空间,关系复杂的矿井通风及巷道联通,以及巷道类型和逆流风速等环境因素灾后都会限制人员逃生。
基于上述,2008年2月被科技部批准立项的国家“十一五”科技支撑计划“矿井重大灾害应急救援关键技术研究”项目(编号:2006BAK25B00)的专题“遇险人员快速救护关键技术与装备的研究”(编号:2006BAK25B00-4)中,提出了“可移动式救生舱”子专题(由北京科技大学和潞安矿业集团公司承担),研制出的救生舱应具有能抵御矿井内瓦斯煤尘爆炸、火灾、水灾等灾害,并能够在压风、电力等线天以上的特点,该救生舱具有密闭舱体、密闭空间气体与人体参数监控系统、空调系统、供电系统、通讯系统等,可以达到国际先进水平。
我国作为能源消费大国,煤炭在我国能源生产的大格局中占有绝对的比重,达到近70%。我国的煤炭产量虽然只占世界煤炭产量的1/3,但煤矿矿难死亡人数占世界煤矿事故死亡人数的4/5。世界每发生20起导致死亡人数最多的煤矿灾难中,就有8起发生在中国,频繁的矿难不仅造成了许多家庭的破裂,同时也严重影响了中国的国际形象。
救生舱具备基本功能包括气密性、隔热性、供氧、空气调节、动力系统、CO2处理、气体监测、通讯指标、附属设施,但具体指标不同。
(1)气密性:目前气密性问题主要是靠双层门、空气帘配合以正压空气得以解决的。一般情况下,避难室双层门结构是在进门端设置两道气密门,而且两道门通过连锁装置来自百度文库制,不能同时处于开启状态,以免外界气体直接进入主舱。单层门则会设置厚重的塑料空气帘(如图1-4)阻挡空气。
(8)建立规章专人管理,确保始终完好,时刻能用。南非《矿产法》规定:避难所和其他安全设施需要定期检查,检查的时间间隔由矿主咨询矿井督察后决定,或由矿主制定专人调查后上交的报告决定。澳大利亚规定:避难所在井下首次安装时应进行试验测试,包括真空测试,电源支持测试等,以后一个合理周期(6或12个月)也应检测,应按照制造商的要求对避难所进行经常性的检查和维护,并作为日常工作的重点。
(6)避难所的有效防护时间主要根据灾变时期应急救援时间确定,南非规定避难所的有效防护时间为8~24h,澳大利亚规定至少36 h,美国规定不低于96h。
(7)避难所采用两道门结构,以便形成风障,防止有毒有害气体侵入,必须有供氧、有毒有害气体处理、温湿度控制、通信、指示等设施及自救器、饮水机、急救设备等。
目前可移动式救生舱按其材质可以分为钢制救生舱(硬体式救生舱)和可充气式救生舱(软体式救生舱)。
钢制救生舱:外壳是钢制的,能承受一定强度的压力,一般入口处占有近1m的空间用以设置双层门或其他阻止外界气体进入生存舱室的装置。中段大部分空间为有双排座椅的人员生存室,有少部分仪器设备在此处。避难室另一端为主要设备隔间,动力系统等大部分设备均在此处。如图1-1、1-2。
(3)便携式避难室(Portable Chamber)。多数为车体式结构,具有行进装置或者吊装、拖曳部件,能在巷道中移动,随工程进度不断改变架设位置。氧气瓶、通讯、监测仪器等设备均安装在车体中。
南非自20世纪70年代就出现避难所。1986年Kinross金矿矿难(死亡177人)后,法律强制井工矿必须设立避难所。
《国务院关于进一步加强企业安全生产工作的通知》(国发【2010】23号)明确要求“煤矿和非煤矿山要制定和实施生产技术装备校准,安装监测监控系统、井下人员定位系统、紧急避险系统、压风自救系统、供水施救系统和通信联络系统等技术装备,并于3年之内完成”,即监测监控系统,实现对煤矿井下CO浓度、瓦斯、风速、温度的动态监测;人员定位系统,掌握各个区域的作业人员分布情况;压风自救系统,确保发生灾害时现场工作人员有充分的氧气供应;避难硐室、可移动式救生舱等紧急避险系统,实现井下灾害突发时的安全避险;通信联络系统,实现矿井井上下和各个作业地点通信畅通;供水施救系统,在灾害突发后为井下作业人员提供清洁水源或必要的营养液。其中监测监控、人员定位、压风自救、供水施救和通讯联络在煤矿日常建设中已经基本完善,只有紧急避险系统没有完善的理论及实践研究,事故发生的瞬间,因坍塌、爆炸、冲击波等伤害而遇难的人员,仅占事故伤亡总人数的10%左右;而90%的煤矿工作人员遇难。是由于事故发生后附近区域氧气耗尽,同时含有高浓度的有毒有害气体,而逃生路线被阻断,无法及时撤离到安全区域所造成的,因此,建设一个使现场人员能够及时避开危险的安全场所,是减少人员伤亡的最可靠的措施。
2007年10月,澳大利亚巴瑞克矿区的一座金矿发生井下车辆火灾,54人被困,躲入救生舱后全部成功获救。2006年1月29日凌晨3时,加拿大萨斯喀彻温省(Saskatchewan)一座钾盐矿井发生火灾事故,72名矿工被困井下,转移至矿井应急避难室(澳大利亚Minearc Systems公司生产)中,经过26h全力营救,72名矿工全部成功获救。2003年和2004年,南非的两个特大先后发生停,电和火灾事故,其中一个矿井下有3400多人,结果只死亡9人,有280人是救护队在井下各个避难所里就出来的;另一个矿在2600人返回地面后,发现有52人失踪,2天后在井下的避难所和救生舱里找到,全部被救。2008年8月1日,河南平禹煤电公司发生突出事故,2名矿工及时躲进220米外的硐室避难成功获救。
(1)在发生灾害后,由于工人在井下分布较为分散,所以不能够及时了解灾害位置和洞察发展趋势如火灾发生时,井下逃生人员无法获悉地面应急抢险指挥部是否实施了反风风流短路等控风避灾措施,因此无法了解实施控风避灾措施后的避灾路线,尤其在灾害产生风压和主风机风压综合作用引起的巷道风流漩涡或紊乱情况下,致使灾变期间风流情况千变万化。
为进一步提高煤矿安全防护和应急救援水平,保障矿工生命安全,促使煤矿安全生产,借鉴美国、澳大利亚、南非等国家成功经验和做法,国家把建设煤矿井下避难所(就生硐室)应用试点已列入2010年煤矿安全改造项目的重点支持方向。
煤矿井下紧急避险系统是在井下发生紧急情况时,为遇险人员安全避险提供生命生命保障的设施、设备、措施组成的有机整体,紧急避险系统建设包括为井下人员提供自救器建设井下紧急避险设施,合理设置避灾路线,科学制定应急预案及进行自救培训等,紧急避险系统是煤矿井下安全避险六大系统的核心部分。2010年五月19日,国家安监总局在山西潞安矿业集团常村煤矿召开全国井下救生舱等避险设施建设现场会,该矿当时已建成1个永久避难硐室和2个救生舱,据常村煤矿估算,采用永久避难硐室救生舱模式,全矿井约需费用一亿元。
(4)避难所的设置应考虑多方面因素:所服务区域的特点(空间结构、危险源分布、作业类型等);灾变时期人员抵达难易程度、所需时间;随身佩戴自救器的防护时间;岩体稳定性和支护有效性。
(5)避难所类型的选择应考虑所服务区域的特点及可能发生的灾害类型。一般规定,避难所的类型由煤矿根据自身的特点自主选择,以满足矿工避险需要的原则。目前,南非煤矿以避难硐室为主;美国煤矿井下配备避难所1193台,其中软体式救生舱1000台、硬体式救生舱123台,避难硐室70个;加拿大煤矿采用避难硐室与救生舱相结合方式,二者的数量比约为1:5,救生舱以硬体式为主。
(2)灾害发生时井下工人一般会产生极大的心理压力,不能选择正确的避灾路线,因而产生流动混乱,并且地面应急抢险指挥部因井下逃生人员流动混乱无法确定逃生人员位置,特别是无法通过一些必要的控风措施来控制灾害扩展和蔓延。
(3)避灾时流动混乱,使得已经佩戴了过滤式自救器的井下工人,可能会误入烟雾浓度较高区域,破坏过滤式自救器过滤一氧化碳等有害气体的作用,造成逃生人员中毒或窒息死亡。目前我国井工煤矿工人所使用的隔离式自救器最大供氧时间约为45min,而在45min之内,无论在大型煤矿还是小煤矿,要在事故发生后逃离危险区域都是非常困难的。
(1)永久性固定避难室(Permanent Chamber)。在矿井巷道两侧地层中直接挖掘而成,主要布置在主巷或逃生路线上。利用贯穿岩层到达地面的管道为避难室内持续地BG大游官方网站输送氧气、实现通讯。
(2)临时性固定避难室(Temporary Chamber)。在矿井工作区域附近的巷道岩层中挖掘而成,依靠氧气瓶等设备为避难室提供一定时间的氧气。当此处采掘工作完成后,临时性避难室即被废弃,室内密封门、氧气瓶、通讯、监测仪器等重复性使用设备将拆除并转移到新建设的临时避难室中。
因此,可以看出紧急避难系统的建立,对提高煤矿井下紧急避险能力,减少事故伤亡,促进煤矿安全生产具有十分重要的意义。
一直以来,欧美各发达国家对矿井事故的应急救援工作十分重视,将应急避难空间作为地下矿山应急救援工作的重要部分进行了大量的研究。其中,对于加拿大、美国、澳大利亚采矿业发达等国家,在地下矿山中设置和使用矿井应急避难室,已经是矿井应急救BG大游官方网站援中的一项成熟而有效的技术,并且已经有了多次成功营救的经验。
印度、英国、德国、法国等也在研究和应用避难所。从使用情况来看,早期主要用于金属矿山,煤矿应用研究较少,认为煤矿在灾变时期容易发生火灾或爆炸等次生灾害,突发紧急情况下人员尽可能撤离。目前,越来越多的国家规定煤矿井下必须设立避难所。国外煤矿井下紧急避险系统的建设和使用,有以下几个方面好的经验:
(1)世界各主要采煤国对井下紧急避险系统的建设和使用维护管理均有明确的法律法规,美国、南非等还建立了救生舱标准,使煤矿安全保障能力具备必要的法制基础。
(2)有紧急避险系统的整体设计,并于其他安全保障系统有机结合,美国职业安全健康研究院在有关报告中指出:避难所挽救生命的可能性只有在煤矿经营者结合救生舱制定全面的逃生救援计划的情况下才会实现。
(3)井下紧急避险设施应实现对矿井的全覆盖,所有井下人员,包括生产人员、管理人员及可能临时出现的人员应有避难空间,澳大利亚西澳矿山安全检查规章推荐避难所容量应为服务区作业人员数量的2倍以上。
可充气式救生舱:救生舱采用阻燃、耐高温帆布等软质材料制造而成。工作时张开一个气囊,矿工将在张开的气囊中得到庇护。未工作时,气囊和氧气瓶、空气瓶、二氧化碳洗涤装备、降温设备、食物、水、急救用品等存在一个防爆的拖撬之中。如图1-3。
澳大利亚金矿自2000年一直使用可移动式救生舱,目前已是法律的基本要求。
美国煤矿井下避险设施的应用起源于2006年,西弗吉尼亚州萨戈煤矿发生的爆炸事故(死亡12人),引起社会的高度重视,美国国会通过了《2006年矿工法》。其后,MSHA和有关政府出台了新的矿山安全管理规定,规定井下必须设置气密性避难所。